If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+20X-700=0
a = 1; b = 20; c = -700;
Δ = b2-4ac
Δ = 202-4·1·(-700)
Δ = 3200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3200}=\sqrt{1600*2}=\sqrt{1600}*\sqrt{2}=40\sqrt{2}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-40\sqrt{2}}{2*1}=\frac{-20-40\sqrt{2}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+40\sqrt{2}}{2*1}=\frac{-20+40\sqrt{2}}{2} $
| -37+p=13 | | -2.7^t+13.5t+14=0 | | 10x+625/25x=0 | | -(-(-)(-)(-10x)=-5 | | 2/3x-1=-x/2 | | 4r^2+9r-4=0 | | -3x^2+8x-3=0 | | 2x(x)+22=0 | | 0.17x+x=19.89 | | |2x/3+3/5|=4 | | 4x2-20x+18=0 | | 4m+24=3m+36 | | 7(x+7)=5(x+7) | | 5-2x/5=5 | | 30x^2+15x+7=0 | | 16x2-16x=0 | | 5x=3x+30=2x+10 | | -35x-40=-3x+40 | | 8+2*(x-3)=2*(4x-3)-1 | | (X)(x)(x)=504 | | 6(8-x)=-18 | | 3/4(2x-1)-5=2/3(x+1) | | 3/4(2x-1)-5=2/3(x | | x=2x+4x= | | 1/4p=18 | | x4+4x2-21=0 | | |1-3x|=|3-2x| | | 3q=12-4 | | x÷4-8=1 | | x²+x=21 | | n²+n=20 | | 3x^2-4.5x-3=0 |